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Launch Collision Probability

Gary Bollenbacher and James D. Guptill
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Summary

This report analyzes the probability of a launch vehicle
colliding with one of the nearly 10 000 tracked objects orbiting
the Earth, given that an object on a near-collision course with
the launch vehicle has been identified. Knowledge of the
probability of collision throughout the launch window can be
used to avoid launching at times when the probability of
collision is unacceptably high. The analysis in this report
assumes that the positions of the orbiting objects and the launch
vehicle can be predicted as a function of time and therefore that
any tracked object which comes close to the launch vehicle can
be identified. The analysis further assumes that the position
uncertainty of the launch vehicle and the approaching space
object can be described with position covariance matrices.
With these and some additional simplifying assumptions, a
closed-form solution is developed using two approaches.

The solution shows that the probability of collision is a
function of position uncertainties, the size of the two potentially
colliding objects, and the nominal separation distance at the
point of closest approach. The impact of the simplifying
assumptions on the accuracy of the final result is assessed and
the application of the results to the Cassini mission, launched in
October 1997, is described. Other factors that affect the prob-
ability of collision are also discussed. Finally, the report offers
alternative approaches that can be used to evaluate the probabil-
ity of collision.

Introduction

Nearly 10 000 tracked objects are orbiting the Earth. These
objects encompass manned objects, active and decommis-
sioned satellites, spent rocket bodies, and debris. They range
from a few centimeters in diameter to the size of the MIR Space
Station. Their tracking and cataloging is the responsibility of
the U.S. Air Force 1st Command and Control Squadron (CACS)
at Cheyenne Mountain located in Colorado Springs, Colorado.

When a new satellite is launched, the launch vehicle with its
payload attached passes through an area of space where these
objects orbit. Although the object population density is low,
there always exists a small but finite probability of collision
between the launch vehicle and one or more space objects.
Despite the very low probability of collision, even this small

risk is unacceptable for some payloads, such as the Cassini
spacecraft.

Cassini was launched by a Titan IV/Centaur rocket on an
interplanetary trajectory at the window opening on October 15,
1997. The trajectory will take the Cassini spacecraft to Saturn
via two Venus, an Earth, and a Jupiter gravity assists. It is a one-
of-a kind, high-cost spacecraft equipped with three radioiso-
tope thermoelectric generators fueled by 32.7 kg of the
nonweapons grade isotope plutonium–238 dioxide. In addi-
tion, Cassini employs 117 lightweight radioisotope heater
units, each containing 2.7 g of the same plutonium dioxide
isotope. A collision with an orbiting space object would not
only cause a loss of mission but would also risk the release of
plutonium into the upper atmosphere.

To mitigate even the small risk of collision associated with
launching at an arbitrary time within the daily launch window,
a decision was made approximately 1 year before launch to
require a collision avoidance analysis (COLA) that would be
performed prior to the opening of each daily launch window.
The analysis would examine the entire daily launch window
and determine the launch times that resulted in an unacceptable
potential for collision with any tracked object. Launch would
not be attempted at any time for which an unacceptable poten-
tial for collision was identified. This mission assurance COLA,
as it is sometimes called, was in addition to the safety COLA
that is performed at the Eastern Range for all launches to protect
orbiting manned objects or objects capable of being manned.

Mission assurance COLA analyses are routinely conducted
by the Air Force for all Titan IV/Centaur launches. However,
prior to the Cassini mission, the existing capability for COLA
analyses was limited to the coast phases of a single, time-
invariant trajectory, which was inadequate for the Cassini
mission. The Cassini trajectory, unlike most Air Force mis-
sions, was a function of time into the window at which liftoff
occurred. Additionally, the Cassini trajectory had a very long
second Centaur burn, during which it passed through a region
of space densely populated by space objects. To remedy these
shortcomings, the Air Force developed new mission assurance
COLA analysis software to satisfy NASA-defined require-
ments. These requirements were to perform a seamless COLA
analysis from Titan stage II ignition up through geosynchro-
nous altitude, including powered and coast flight phases, while
fully accommodating the trajectory variability. The miss crite-
ria used in the Air Force COLA analysis were developed by
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NASA and were based on the probability analysis described in
this report.

The variability of the Cassini trajectory is typical of inter-
planetary launches: it must link a nearly time-invariant inter-
planetary target (at the target planet) with a launch pad that is
moving in space primarily as a result of the Earth’s rotation.
This is achieved by varying the direction of flight as a function
of time into the window. The initial direction of flight is called
the flight azimuth and is measured as the angle between the
direction of flight and true north. For the Cassini mission, the
variable flight azimuth was implemented as follows: The Titan
stage 0 (the first stage) was designed to fly a planar trajectory
of either 93° or 97° flight azimuth. The 93° flight azimuth was
available from window opening until 80 min into the window;
the 97° flight azimuth was allowed from 40 min into the
window until window close, 140 min after window opening.
Both azimuths were available between 40 and 80 min, select-
able on launch day. Following stage 0, Titan stages 1 and 2
would perform yaw steering to place the launch vehicle into the
astrodynamically correct flight plane. After jettisoning the
Titan stage 2, the Centaur performed two planar main engine
burns separated by a park-orbit coast. Both burn durations and
the park-orbit coast duration were a function of liftoff time.
Launch was planned to occur on the whole minute; thus, taking
into account the two possible launch azimuths between 40 and
80 min into the 140-min launch window, there were 182
possible and different nominal launch trajectories for each day.

The software developed by the Air Force to perform COLA
analysis for Cassini consisted of three parts:

1. Trajectory generator: For a given launch day, the trajec-
tory generator creates a matrix of state vectors that accurately,
though not perfectly, describe the position and velocity of the
launch vehicle as a function of launch time, time into flight, and
launch azimuth. State vectors for each of the 182 nominal
trajectories required for each daily launch window are then
passed on to the conjunction analyzer.

2. Conjunction analyzer: The conjunction analyzer com-
pares the state vectors for each of the 182 trajectories for that
day with the trajectories of all cataloged space objects. Any
conjunction between the launch vehicle and a space object that
violates predetermined criteria is identified and appropriate
data are written to an output file that is then forwarded to the
postprocessor.

3. Postprocessor: The postprocessor manipulates the data in
the conjunction analyzer output file and generates easily read-
able summary charts that define unacceptable launch times.
Prior to the opening of the launch window, these charts are
distributed to the appropriate launch personnel.

NASA assumed the responsibility for specifying the criteria
that were used in the conjunction analyzer. The criteria estab-
lished a minimum clearance that was required between the
launch vehicle and any space object. If, for any given liftoff

time, the nominal launch vehicle trajectory passed a space
object with less than the minimum required clearance, launch
would not be attempted at that time in the window.

The miss distances computed by the conjunction analyzer are
based on nominal trajectories. Four factors may cause the
actual miss distances to differ substantially from the nominal
miss distances computed by the conjunction analyzer:

1. Launch vehicle position uncertainties: Launch vehicle
position errors, expressed as 3×3 position covariance matrices,
will generally be a function of time from liftoff.

2. Space objects position uncertainties: Position errors of
space objects are also given by 3×3 position covariance matri-
ces that are generally a function of time since the last tracking.

3. Liftoff time errors: Errors in liftoff time occur because the
resumption of the count at 5 min prior to liftoff is a manual
operation and thus subject to operator reaction time. Errors in
miss distance are the result of performing the COLA analysis
for an assumed nominal liftoff time in the center of the tolerance
range although the actual liftoff may occur earlier or later. Thus,
the launch vehicle may arrive at some point in space earlier or
later than nominal. With space objects traveling at rates up to
10 km/s, these liftoff time errors can have a substantial effect on
actual miss distances.

4. Trajectory generation errors: As described above, the
software developed by the Air Force reconstructed nominal
launch vehicle trajectories. Although the methodology used by
the trajectory generator is very accurate, it does introduce some
small errors into the trajectories causing them to differ slightly
from the planned trajectory.

The 3×3 covariance matrices describing the launch vehicle
and the space object position uncertainties just discussed are
generally based on normal distributions and this will be assumed
throughout this report.

To establish appropriate miss criteria, NASA performed a
probability analysis that defined the relationship of the nominal
miss distance, the size of the objects, and the covariance
matrices with the probability of collision. The miss distance
requirement, based purely on probabilities, was then adjusted
to account for liftoff time errors. Although there are a number
of approaches that account for liftoff time errors, NASA
selected a sufficiently conservative but simple methodology.
This methodology justified omitting the small trajectory gen-
eration errors.

A final step in the establishment of miss criteria was to assess
the reduction in launch window that would be lost because of
miss criteria violations. A very conservative (large) miss crite-
rion reduces the probability of collision but increases the
number of unacceptable conjunctions, thereby potentially pre-
cluding launch during a significant portion of the launch
window. Other than illustrating the resultant impact on the
Cassini mission, the subject of launch availability will not be
addressed further.
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This report describes the analysis performed to assess the
probability of collision. Two approaches are shown with each
one requiring simplifying assumptions. The first approach is
very intuitive and algebraically intensive. The second is math-
ematically more rigorous and offers the advantage of providing
an estimate of the error introduced by the simplifying assump-
tions. Necessary adjustments due to the lack of adequate
covariance data are also discussed. Finally, this report addresses
other factors that must be considered in the establishment of the
final miss criteria. The application of the results derived herein
to the Cassini mission are described in appendix A. The
symbols used are listed in appendix B.

Relative Motion Coordinate System

The probability analysis described in subsequent sections
uses a relative motion coordinate system (RMCS), which is a
reference system inertially fixed in space and defined at the
moment of closest approach of the launch vehicle to a space
object. As will be discussed in more detail later, the selection of
this system makes the probability of collision independent of
the z-direction, effectively reducing a three-dimensional prob-
lem to a two-dimensional one.

In the RMCS, the z-axis is in the direction of motion of one
object relative to the other, the y-axis passes through both
objects at the moment of closest approach, and the x-axis
completes the orthogonal system shown in figure 1. As shown
in the figure, the origin of the system is assumed to be at the
center of one of the two conjuncting objects.

To compute the probability of collision, it will be necessary
to transform the covariance matrices from inertial coordinates
into the RMCS. The transformation can easily be derived if it

is assumed that the trajectory of both the launch vehicle and the
conjuncting space object, while in proximity, can be repre-
sented as the motion along a straight line at a constant speed.
For the purpose of this analysis, objects can be considered to be
in proximity if there exists a probability of collision sufficiently
large to be of concern. For all practical purposes, using the
results derived in this report, probabilities of collision for
nominal separation distances greater than ±100 km are negli-
gible. Approximating any trajectory as a straight line over a
distance of ±100 km from an arbitrary point along that trajec-
tory is reasonable, for it can be shown that

1. For orbiting objects, a 200-km-long trajectory segment
will deviate from a straight line tangent to the trajectory at its
midpoint by no more than 0.8 km at the ends.

2. For the launch vehicle, based on an analysis of the Cassini
trajectory, the maximum deviation from a 200-km-long straight
line is 0.400 km.

Likewise, the assumption of constant velocity is valid, for it
can be shown that the velocity change over the same ±100-km
distance is

1. Less than 0.35 percent for orbiting objects
2. Less than 1.90 percent under worst-case conditions for a

launch vehicle (based on an analysis of the Cassini trajectory);
this worst-case velocity change occurs during Titan stage 2
burn, the first part of the trajectory; during Centaur main engine
burns, the velocity change is less than 0.75 percent; and during
coast phases it is less than 0.2 percent over the same distance.

Assume that for a given liftoff time, the position and the
velocity of the launch vehicle and the space object can be
expressed as a function of time from liftoff, referred to as
mission elapsed time (MET). Given the assumption of linear
motion at constant speed, the position vectors of the two objects
as a function of time are written as

R i j k

R i j k

LV

SO

= +( ) + +( ) + +( )

= +( ) + +( ) + +( )

a b t a b t a b t

a b t a b t a b t

1 1 1 1 1 2 1 2 1 3 1 3

2 1 2 1 2 2 2 2 2 3 2 3

, , , , , ,

, , , , , ,

where RLV  and RSO are the position vectors of the launch
vehicle and the space object in inertial coordinates at time t; ai,j
and bi,j are constants, and i, j , and k are orthogonal unit vectors
in the inertial coordinate frame.

The difference between the two vectors, ∆R = RSO – RLV , is
a vector that points from the launch vehicle to the space object
and is expressed as

∆R i j k= +( ) + +( ) + +( )τ γ τ γ τ γ1 1 2 2 3 3t t t ( )1

z-axis

x-axis

y-axis

Minimum 
approach
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Figure 1.—Relative motion coordinate system (RMCS).
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where τi = a2,i – a1,i and γi = b2,i – b1,i.

The time derivative of ∆R then gives the velocity of one object
with respect to the other:

d

d

∆R
i j k

( ) = ( ) + ( ) + ( )
t

γ γ γ1 2 3

The direction of this vector defines the z-direction of the
RMCS. Note also that the relative velocity is along a fixed
direction and has a constant magnitude.

At the point of closest approach, the first time derivative of
the magnitude of ∆R  must be zero:

d

d t
∆R = 0

The time at which this derivative is zero, t0, is given by

t0
1 1 2 2 3 3

1
2

2
2

3
2=

− + +( )
+ +

τ γ τ γ τ γ
γ γ γ

Substituting this value of t0 in equation (1) gives

∆R i j kclosest approach = +( ) + +( ) + +( )τ γ τ γ τ γ1 1 0 2 2 0 3 3 0t t t

or more simply

∆R i j kclosest approach = ( ) + ( ) + ( )β β β1 2 3

where the constants βi = τi + γi t0. This vector defines the
direction of the y-axis of the RMCS.

The direction of the x-axis of the RMCS is simply the
crossproduct of ∆Rclosest approach and d(∆R)/dt. The compo-
nents of this vector will be designated α1, α2, and α3.

The three orthogonal vectors defined by the components αi,
βi, and γi are used to form the matrix

M =
















α α α
β β β
γ γ γ

1 2 3

1 2 3

1 2 3

where it is now assumed that the rows of the matrix have been
converted to unit magnitude.

Vectors and position covariance matrices are then easily
transformed from inertial coordinates to the RMCS as follows:

V M VRMCS Inertial ( )= [ ] 2

C M C MRMCS Inertial ( )= [ ][ ][ ]T 3

where V is any vector and C represents a 3×3 position covari-
ance matrix.

In practice the equations of motion will not normally be
expressed as equations of a straight line as assumed herein.
Instead, a numerical integrator propagates the trajectory of the
launch vehicle and the space object in small time increments. At
each time step, RLV , RSO, and ∆R will be computed. The
program will continuously monitor the separation distance ∆R
to determine the point at which the magnitude of ∆R is mini-
mum. The vector ∆R at that point defines the direction of the
RMCS y-axis. By taking the values of ∆R at two different points
in time near the point of closest approach, one can determine
the direction of the RMCS z-axis. From these data, the values
of αi, βi, and γi can be computed.

Probability of Collision

Approach 1

An expression for the probability of a launch vehicle colli-
sion with an orbiting space object is now derived. The assump-
tions are

1. An orbiting space object on a near-collision trajectory
with the launch vehicle has been identified, and based on
nominal trajectory propagation, the miss distance H has been
determined; both objects are finite in size.

2. The velocity vector of one object relative to the other is
constant (this is true if both objects move in a straight line at
constant velocity as shown in the section Relative Motion
Coordinate System).

3. A known position uncertainty of both objects exists
relative to their nominal positions and these uncertainties are
quantified by two 3×3 position covariance matrices.

4. The position errors are normally distributed; that is, covari-
ance matrices are based on a normal multivariate distribution.

5. The covariance matrices are constant over the time inter-
val when the two objects are in proximity.

6. The RMCS has been defined and all relevant quantities
have been transformed into the RMCS. (This can be done, for
example, by using equations (2) and (3).)

Even though the objects nominally approach one another no
closer than H, the assumption of a position uncertainty implies
that there exists some finite probability of collision. However,
as will be demonstrated, the collision probability is indepen-
dent of time and therefore of the position of the objects in the
RMCS z-direction. Furthermore, it will be shown that the
probability of collision does not depend on the position vari-
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ances of either object in the z-direction or on any of the
covariances that involve a component of z.

To establish the foregoing conclusions, consider the two
objects as seen looking at the x,y-plane of the RMCS along a
line parallel to the z-axis, as illustrated in figure 2. One of the
two objects (it does not matter which) is assumed centered at the
origin whereas the second object is nominally located on the
y-axis a distance H from the first. In the z-direction, the objects
are initially some distance apart. As object 2 moves with respect
to object 1, the objects will become progressively closer until
object 2 is at z = 0, at which time the nominal separation distance
is H. As object 2 continues to move in the z-direction, the
separation distance will again increase.

The definition of the RMCS ensures that the velocity of
object 2 relative to object 1 be entirely in the z-direction, with
the velocity components in both the x- and y-directions being
zero. Thus, the projection of the two objects into the x,y-plane
is unaltered by the motion of object 2 relative to object 1.

To determine whether or not the objects will collide, one need
only examine the location of the objects in the x,y-plane. When
referring to the location of the objects, it is understood that
reference is made to the position of just one point of each object
designated as the object’s “center” (although it need not be the
true center). Given their finite sizes, both objects will also
occupy some space surrounding the center. It is clear that a
collision will result if any part of the projection into the x,y-
plane of one object overlaps any part of the projection of the
other object. To be more specific, if the two objects are located
at their nominal position, as illustrated in figure 2, no collision
will result. However, there is some probability that object 1 and
object 2 are actually located at points x1, y1, and points x2, y2,
respectively. The objects will collide if the separation between
the two points x1, y1 and x2, y2 is less than the physical size of
the objects.

The first step in the probability analysis is to determine the
probability that object 1 is located at an arbitrary point x,y
without regard to its location in the z-direction. To this end, let
p1(x,y,z) be the three-dimensional probability density function
associated with object 1. The function p1(x,y,z) is obtained by
using the 3×3 covariance matrix of object 1 transformed into the
RMCS. The two-dimensional probability function p1(x,y) is
obtained by integrating the three-dimensional probability func-
tion p(x,y,z) from z = –∞ to z = +∞:

p x y p x y z z
z

z
1 1, , , d( ) = ( )

=−∞

=+∞
∫

This integration can be performed under the assumption that the
covariance matrices are not a function of time over the period
of interest.

The function p1(x,y) is the density function associated with
the marginal distribution of p1(x,y,z). By virtue of the normal

distribution assumption, it can be shown from reference 11 that
the covariance matrix for the marginal distribution p1(x,y) is
obtained from the original 3×3 covariance matrix by deleting
the row and column corresponding to the z-direction to effec-
tively remove the z-variance and the covariances involving
position uncertainties in the z-direction. Thus, the marginal
distribution p1(x,y) is only a function of variances and covari-
ances involving x and y. When object 1 is located at point x1, y1,
the probability density is then given by p1(x1,y1).

Similarly, when object 2 is located at point x,y, the probabil-
ity density is given by p2(x,y), where the two-dimensional
probability density of object 2 is obtained by using the three-
dimensional covariance matrix for object 2 with the row and
column corresponding to z deleted.

Return now to figure 2 and let the center of object 1 be located
at some point x1,y1. If the center of object 2 is also located at
point x1,y1, the two objects will collide. However, given the
finite size of both objects, they will also collide if the center of
object 2 is some distance removed from object 1. In fact, there
are many points where the center of object 2 can be located such
that a collision of the two objects will result. For example,
consider the case in which the cross-sectional area of both
objects when projected in the x,y-plane is a circle, as illustrated
in figure 3. The first object is centered at x1,y1. If the center of
the second object is anywhere within the dashed circle, the

1Refer to Theorem 2.4.3, p. 31.

Figure 2.—Projection of two conjuncting objects into
   x, y-plane.

x

 y

H

Nominal center of object 2

Nominal center of object 1

x1, y1

x2, y2

Probability 
density contour

Possible 
locations 
of objects 
1 and 2
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two objects will collide. The two-dimensional region bounded
by the dashed circle is designated R* , the area of which is A* .

In actuality, the cross-sectional areas presented to the x,
y-plane will not be circles. Furthermore, the shape, size, and
orientation of the cross-sectional areas will generally not be
known. Nevertheless, there will exist for any two objects a
region R* such that if the center of object 2 is within that region,
a collision will result.

Thus, given probability density p1 when object 1 is located at
x1,y1, the collision probability density is

p p x y p x y A
R

= ( ) ( )∫1 1 1 2 4, , d ( )
*

where the integration is carried out over the region R*.
At this point an assumption will be made to greatly simplify

the remainder of the derivation. This assumption will have the
effect of degrading the accuracy of the final result, particularly
for large values of A*. This effect will be quantified in a later
section of this report. The simplifying assumption is to let the
probability density function p2(x,y) at an arbitrary point x,y be
constant over the region R* and be equal to its value at point
x1,y1, that is

p x y p x y2 2 1 1, ,( ) = ( )

for all points x,y within the region R* . With this assumption,
given that object 1 is located at x1,y1, the collision probability
density given in equation (4) can be rewritten as

p p p x y p x y AC≈ = ( ) ( )1 1 1 2 1 1, , *

To obtain the overall probability of collision, integrate over
all possible locations of object 1, with the resultant probability
of collision being

P p x y

P A p x y p x y x y

C Cx

x

y

y

C x

x

y

y

=

= ( ) ( )[ ]

=−∞

=+∞

=−∞

=+∞

=−∞

=+∞

=−∞

=+∞

∫∫

∫∫

d d

, , d d

( )

*

1 1

1 1 1 2 1 1 1 1

1

1

1

1

1

1

1

1

5

Since the two covariance matrices are assumed to be known,
it is possible to expand the probability density functions and
explicitly perform the two integrations to arrive at a closed-
form solution for the probability of collision. This procedure is
now described.

Assume that the two-dimensional covariance matrix for
object 1 is given by

σ ρ σ ν
ρ σ ν ν

1
2

1 1 1

1 1 1 1
2













where σ1 and ν1 are the 1-sigma position uncertainties along the
x- and y-directions, respectively, and ρ1 is the correlation
between the x- and y-errors. This matrix is the original 3×3
covariance matrix for object 1 in the RMCS with the row and
column corresponding to the z-direction deleted. Similarly, let

σ ρ σ ν
ρ σ ν ν

2
2

2 2 2

2 2 2 2
2













be the covariance matrix for object 2. The corresponding
probability density functions are then given by

p

x x y y

1
1 1 1

2

1

2 1
2

1

2 1

1
2 1

2
1 1 1 1

2

=
−

×

−
−( ) ( ) − ( )( )+( )[ ]

πσ ν ρ

ρ
σ ρ σ ν ν

e

/ / / /

and

p

x x y H y H

2
2 2 2

2

1

2 1
2

1

2 1

2
2 2

2
2 2 2 2

2

=
−

×

−
−( ) ( ) − ( ) −( )[ ]+ −( )[ ]{ }

πσ ν ρ

ρ
σ ρ σ ν ν

e

/ / /

 Figure 3.—Illustration of region R* for objects with circular
   cross sections.

x1, y1

Object 1

Object 2Integrate probability
density function of 
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These equations assume that the distributions associated with
p1 and p2 have means of (0,0) and (0,H), respectively.

When these expressions for the probability density function
are substituted into equation (5) and the indicated multiplica-
tion carried out, the resultant expression can then be integrated
by successively applying the following integration formula
(ref. 2)2

e
/

d e ( )
− + +( ) −( )

−∞

+∞
=∫ ax bx c b ac a

x
a

2 2 4 4
6

π

First the integration formula is applied to the inner integration
with respect to x1 to obtain

P A
a a

b
yC

b b b b

y

y
=











−( )
=−∞

=+∞
∫* e d1 2

2
1

4 4
1

2
2
2

1 3 1

1

1

π
π

where

a

a

1
1
2

1
2

1
2

2
2
2

2
2

2
2

1 1 1
2

2 2
2

2 1 1 1 1 1 2 2 2 2 1

3 1 1
2

1
2

2 2
2

1
2

1

2 1

1

2 1

2

=
−( )

=
−( )

= +

= − + −( )[ ]

= + −( )

ρ σ ν

ρ σ ν

ν ν

ρ σ ν ρ σ ν

σ σ

b a a

b a y a y H

b a y a y H

This can be rewritten as

P A
a a

b
yC

F y F y F

y

y
=

− + +

=−∞

=+∞ ( )



∫* e d1

2
1

1
2

2

1 1
2

2 1 3

1

1

π

π

where

F
a a a a

a a

F H
a a a

1
1
2

1 1
2

1
2

1
2

2
2

1 2
2

2
2

2
2

1 2 1
2

2
2

2
2

1
2

2 1 2 1 2 1 2

1 1
2

2 2
2

2 2
2
2

2
2

2
2

1 2
2

1 2 2
2

1
2

=
− + − + + −

+

=−
− +

( ) ( ) ( )
( )

( )

ρ σ ν ρ σ ν σ ν σ ν ρ ρ σ σ ν ν

ν ν

σ ν ρ σ ν −−

+

=
− +

+

( )
( )

( )
( )

( )

ρ ρ σ σ ν ν

ν ν

σ
ν ρ ν

ν ν

1 2 1 2 1 2

1 1
2

2 2
2

3 2
2 2

2
2
2

1 2
2

1 2 1
2

1 1
2

2 2
2

a a

F H
a a a

a a

Again, applying equation (6) to the integration with respect to
y1 yields

P A
a a

b FC
F F F F

=
−( )* e1 2

2
1 1

4 4

2
2
2

1 3 1

π
π π

Making obvious substitutions and after a great deal of tedious
algebra, the result is

P
A

C

H

=
+( ) +( ) − +( )

×
− +( ){ +( ) +( )− +( )[ ]}

*

.
e

( )

2

1

7

1
2

2
2

1
2

2
2

1 1 1 2 2 2
2

0 5 1
2

2
2

1
2

2
2

1
2

2
2

1 1 1 2 2 2
2 2

π σ σ ν ν ρ σ ν ρ σ ν

σ σ σ σ ν ν ρ σ ν ρ σ ν

This can be simplified by defining a new covariance matrix Σ,
which is simply the sum of the two individual covariance
matrices:

Σ =












=












+












σ ρ σ ν
ρ σ ν ν

σ ρ σ ν
ρ σ ν ν

σ ρ σ ν
ρ σ ν ν

T T T T

T T T T

2

2

1
2

1 1 1

1 1 1 1
2

2
2

2 2 2

2 2 2 2
2 8( )

and substituting the new covariance terms into equation (7)

2Table 15, formula 15.75, p. 98.
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P
A

C

T T T T T

T T T T T T H

=
( ) ( ) − ( )

×
− ( )




( ) ( ) −( )








*

.
e

2

1
2 2 2

0 5
2 2 2 2 2

π σ ν ρ σ ν

σ σ ν ρ σ ν

or

P
A

C

T T T

H T T=
−

− −( )[ ]* .
e

2

1

1 2

0 5 12 2 2

π σ ν ρ

ν ρ

One more simplification is possible by letting

ν ν ρeqv = −T T1 2

where νeqv is an equivalent position error in the y-direction with
zero correlation, and the final result then becomes

P
A

C
T

H
=

















− ( )*

eqv

.
e ( )eqv

2

1
9

0 5 2 2

π σ ν
ν

The next section will provide an alternative approach for
deriving equation (9), which additionally yields a basis for
estimating the errors inherent in equation (9) because of the
assumption made during its derivation.

Approach 2

This section provides another way to model the probability of
collision to utilize some of the power of a rigorous mathemati-
cal approach and to present the basis on which to evaluate the
effect of the simplifying assumption highlighted in approach 1.
In particular, for each object, a vector of three random variables
associated with the x,y,z-coordinates of the object in the RMCS
will be defined. These variables are then combined and trans-
formed (using the eigenvalues and eigenvectors of the covari-
ance matrix) to produce two random variables that are
independent and are associated with one-dimensional standard
normal distributions (with means 0 and variances 1).

Because of the mathematical formalism used in this section,
it is useful to review the definition of random variable and to see
how the definition is applied to near-collision trajectories.
Random variable is defined (ref. 3)3 as a mapping (or function)
from an event space to a number on the number line. A classical
example is rolling a pair of dice where the event is the roll itself
(i.e., one roll out of the event space of all possible rolls). The
random variable provides a recipe for extracting a number from

any such event. In the case of rolling dice, the recipe (or
mapping) involves counting the dots facing up on the two dice.
In this paper, the event space includes all possible trajectories
(i.e., those related to all possible position uncertainties) of the
two objects (launch vehicle and orbiting object) associated with
one identified near-collision trajectory. From this event space,
the actual positions of the two objects at the moment of
nominally closest approach can be extracted. For example, one
mapping (random variable) can be defined from the event space
to the real number line by identifying the x-coordinate (in the
RMCS) of the location of object 1 at the time of closest
approach. Similarly, five more mappings can be defined for the
y- and z-coordinates of object 1 and for all three coordinates of
object 2. To distinguish between real numbers and random
variables, this section uses upper case letters for random
variables, upper case letters with arrows for vectors (or ordered
sets) of random variables, and lower case letters for real
numbers.

The same six assumptions listed at the beginning of the
section Approach 1 are also made here. Let the random variabler
E  map a trajectory event to the ordered triple of coordinates
associated with the location in the RMCS of the center of object
1 at the moment of nominally closest approach. Similarly, let
the random variable 

r
F map to the coordinates of the location of

the center of object 2. Then,
r
E and 

r
F are distributed as trivariate

normal distributions with means (0,0,0) and (0,H,0) and, say,
covariances ΣE

3( )  and ΣF
3( ) , respectively.

In this approach, the two three-dimensional random vari-
ables are combined first and then a marginal distribution is
extracted. In a way similar to the earlier discussion but in
reference to all three dimensions, a collision is defined to occur
when the two objects are positioned such that any part of one
object occupies the same volume as any part of the other object.
In particular, the location of the two objects relative to each
other completely determines whether or not a collision occurs
irrespective of where the pair of objects is located in space.
(Note this differs from the first approach for modeling the
probability of collision wherein the location of one object was
fixed at some (albeit arbitrary) point, the coordinates of which
are later used as a dummy variable of integration.) Then a three-
dimensional region S* can be defined based on the relative
positions of the two objects at the time of nominally closest
approach such that whenever the relative positions are “near
enough to each other” to be inside S* , the two objects will
collide. To define the relative location of the two objects with
respect to each other, subtract the two position vectors associ-
ated with the two objects. Moreover, define a mapping from a
trajectory event to a set of three coordinates in the RMCS of this
relative location vector by a new random variable 

r r r
G F E= − .

Note that this effectively reduces the dimensionality of the
problem from six (three coordinates for each of two objects) to
three components of the relative position vector. Although  

r
G

3Definition 1, p. 53.
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maps events to a somewhat different vector space from that of
the other two random variables, its components are referred to
as X,Y,Z. Note that the region of collision S* is centered at the
origin of the 

r
G -space (i.e., when 

r r
E F= ). In a manner similar

to the discussion in the first approach but now in three dimen-
sions, consider a case in which both objects are spheres. The
region S* is also a sphere centered at the origin with a radius
equal to the sum of the radii of the two objects. Clearly, the
projection of S* into the x,y-plane is just a circle. In particular,
it is the region R* identified in the first approach but translated
from x1,y1 to the origin of the 

r
G -space. This relationship

between S*  and R*  will hold no matter what the shapes of the
two objects. Call this new region R*

0, which is the same as R*

but is translated to the origin of 
r
G -space. The area of R*

0 is A*

as before.
Now, assume that 

r
E  and 

r
F are independent; that is, assume

that information about the location of one object does not
provide information about the location of the other object. With
the independence assumption, it can be shown (ref. 1)4 that 

r
G

is distributed as a trivariate normal random variable with mean
(0,H,0) and covariance Σ Σ Σ3 3 3( ) = ( ) + ( )

E F .
Next, recall that the z-direction is parallel to the relative

velocity vector of the objects; thus, the variance in the
z-direction corresponds to delays in the arrival of or the prema-
ture arrival of object 1 relative to object 2 at some point on the
x,y-plane passing through the origin of the RMCS. The desire
is to determine the probability of collision irrespective of the
time of collision (i.e., a collision occurs whether it happens
early or late in the near-collision trajectory). Thus, the marginal
distribution of 

r
G is taken by integrating out the random variable

associated with movement in the z-direction. The covariance of
this marginal distribution is obtained by deleting the row and
column associated with movement in the z-direction (ref. 1)5.
Thus, using the notation given in equation (8) of the first
approach, the associated random variable is a bivariate normal
with mean (0,H) and covariance matrix

Σ =












σ ρ σ ν
ρ σ ν ν

T T T T

T T T T

2

2

Note that the variances do not address liftoff time errors, which
will be discussed in the section Application of Results to
Collision Avoidance (COLA) Analysis.

The probability of collision can be found by integrating the
two-dimensional probability density function of this bivariate
normal distribution pXY(x,y), for example, over the region R*

0
centered at the origin as noted earlier:

P p x y AXY

R

= ( )∫ , d
*
0

where pXY(x,y) is the probability density function associated
with Σ and is given by

p x yXY

T T T

x x y H y H
T

T T T T T

,

e
/ / / /

( ) =
−

×
−

−
− − + −( ) ( ) ( ) ( )[ ] ( )[ ]{ }

1

2 1 2

1

2 1
2

2

2 2

πσ ν ρ

ρ
σ ρ σ ν ν

For comparison, consider applying the simplifying assump-
tion taken in the first approach. In 

r
G -space the equivalent

assumption is that the probability density is constant over the
region of integration R*

0 centered at the origin and is equal to its
value at this origin. Substituting (0,0) for (x,y), the integral
reduces to

P p A

p A

A

C XY

R

XY

R

T T T

H T T

= ( )

= ( )

=
−

∫

∫

− −( )[ ]

0

0

2 2 2

0 0

0 0

1

2 1 2

0 5 1

*

*

, d

, d

e* .

πσ ν ρ

ν ρ

or simplifying,

P
A

C
T

H
=

















− ( )*

eqv

.
e ( )eqv

2

1
9

0 5 2 2

π σ ν
ν

which is the same result obtained previously.
This same formula can also be reproduced without the

assumption that the probability density is constant in the region
of integration; rather, it can be assumed that

(a) The region R*
0 is a rectangle whose sides are parallel to

the major and minor axes of the probability density contour
associated with the covariance matrix Σ.

(b) A Taylor series expansion can be performed on the
resultant expression with only the first term retained.

The remainder of this section is devoted to deriving a more
precise formula for the rectangular region and then approximat-
ing the more precise formula with the first term in its Taylor
expansion. A following section will examine the error resulting
from dropping all but the first term of the Taylor expansion.

4Refer to Theorem 2.4.4, p. 31. In Anderson’s notation, take Σ to be the 6×6
covariance matrix composed of ΣE

(3) as the upper left submatrix, ΣF
(3) in the

lower right, and two 3×3 zero matrices elsewhere (due to the independence
of

r
E  and 

r
F ), take µ to be (0,0,0,0,H,0), and take D to be the 3×6 matrix

[–I I ], where I is the 3×3 identity matrix.
5Refer to Theorem 2.4.3, p. 31.
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Starting in 
r
G -space and using a standard technique (ref. 4)6,

the random variables X and Y can be transformed into two
independent standard normal random variables, U and V.
This technique depends on several facts, one of which is that
the covariance matrix is symmetric. Another is that for any
symmetric matrix, an orthonormal matrix N exists such that
NTΣN = K where K is a diagonal matrix with elements that are
the (real) eigenvalues (ref. 5)7 of Σ. Using the positive definite-
ness of the covariance matrix (ref. 1)8, the eigenvalues are
positive (ref. 5)9 so their square roots are real. Thus, a real
diagonal matrix D can be formed, the elements of which are the
square roots of the eigenvalues of Σ. In particular, U and V are
independent standard normal random variables if they are
defined by the transformation of variables (ref. 4)10

U

V
D N

X

Y H
T





= 





− 











−1 0
10( )

where N is an orthonormal matrix with columns that are the
normalized eigenvectors of Σ, and D is a diagonal matrix with
elements that are the square roots of the corresponding eigen-
values. The variables U and V resulting from this transforma-
tion are dimensionless. Using this transformation, the probability
of collision becomes

P p pU

R

V= ( ) ( )
′

∫ u v u vd d ( a)11

where

pU u u( ) = −1

2
110 5 2

π
e ( b).

pV v v( ) = −1

2
110 5 2

π
e ( c).

and Ŕ  is the region obtained by translating the region R*
0 by

(0, –H), rotating it by NT, and rescaling it by D–1. Note here that
the eigenvalues are given by

λ
σ ν σ ν ρ σ ν

± =
+ ± −( ) +T T T T T T T

2 2 2 2 2 2 2 24

2
12( )

Since matrix multiplication by the two-dimensional orthonor-
mal matrix N simply rotates a region without changing its size,
the area A* of the original region is unmodified under both

translation and rotation; however, it is changed by a factor of
D–1during rescaling. Thus, using the eigenvalues defined
above, the area A´ of the transformed region Ŕ  after a little
algebra, becomes

′ =

=

=
−

−

+ −

A A D

A

A
T T T

*

*

*

1

2

1

1

λ λ

σ ν ρ

The derivation up to now is applicable to a region R*
0 of any

size or shape. However, the integration indicated in equation
(11a) is difficult to carry out analytically for an arbitrarily
shaped region. To enable the evaluation of the integral, the
above derivation is now applied to a rectangular-shaped region
centered at the origin of the 

r
G -space in the RMCS with sides

parallel to the major and minor axes of the elliptical density
contours associated with the covariance matrix, as illustrated in
figure 4.

Here, θ is the angle of orientation of both the rectangle and
the elliptical density contour with respect to the x-axis. In the
following, it is assumed that –π/4 < θ ≤ π/4; L* is the length of
the sides of the rectangular R*

0 which are oriented in the
direction of θ; and W*  is the length of the other sides. Note that
L*  may or may not be larger than W* .

6Section 3.1, p. 49.
7Section 23, p. 26.
8Section 2.3, p. 14.
9Section 26, p. 28.
10Section 3.1, p. 49. Figure 4.—Rectangular region R0 in x, y-plane.
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density contour

y

x

W*
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*

*
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It is further assumed that σ νT T
2 2> , in which case the follow-

ing are true:

(1) θ defines the orientation of the major axis of the density
contour with respect to the x-axis.

(2) L* is defined in direction θ (i.e., parallel to the major axis
of the density contour).

(3) λ+ is associated with the axis of the density contour that
lies in the θ-direction (i.e., the major axis).

If ν σT T
2 2> , then replace “major” with “minor” in the discus-

sion below, since the following are true:

(1) θ defines the orientation of the minor axis of the density
contour with respect to the x-axis.

(2) L* is defined in direction θ (i.e., parallel to the minor axis
of the density contour).

(3) λ+ is to be associated with the axis of the density contour
that lies in the θ-direction (i.e., the minor axis), in which case
the ± in equation (12) for the eigenvalues must be replaced
with 7.

The angle θ is given by the following relationship, which can
be derived from the definition of the contours of the density
function pXY:

tan ( )2
2

132 2θ ρ σ ν
σ ν

=
−

T T T

T T

Use this equation to write the eigenvalues as

λ σ ν σ ν θ

σ ν σ ν
θ

± = + ± − +

= + ± −

T T T T

T T T T

2 2 2 2
2

2 2 2 2

2 2
1 2

2 2 2
14

tan

cos
( )

Substituting the expressions for the eigenvalues given in equa-
tion (14) into the characteristic (or eigen-) equation will provide
the eigenvectors. Using the eigenvectors as the columns of the
matrix N and using equation (13) along with a few trigonometric
identities, the matrix N can be simplified to obtain

N =
−





cos sin

sin cos

θ θ
θ θ

Then after translating the region R*
0 by (0,–H) and rotating by

NT, the rectangle will have sides parallel to the u- and v-axes.
The rescaled region Ŕ  of length L´ and W´ centered at a point
we shall call (u´,v´) is illustrated in figure 5. Note that

′ ′ = ′

=
−

=
−

L W A

A

L W

T T

T T

T

T

*

* *
( )

1

1

1
15

2

2

σ ν ρ

σ ν ρ

Note, also, that neither the translation nor the rotation of R*
0

described above will change its dimensions, but rescaling will
modify the dimension parallel to the u-axis by the first element
of D–1 and the dimension parallel to the v-axis by the second
element of D–1. In particular,

′ =
+

L
L*

( )
λ

16a

′ =
−

W
W*

( )
λ

16b

It should also be pointed out that λ+  and λ−  are the lengths

of the semimajor and semiminor (or semiminor and semimajor)
axes of a particular probability density contour associated with
the covariance matrix Σ. Thus, L´ and W´ are nondimensional
quantities, the ratios of the lengths of the sides of the rectangular
region R*

0 to the lengths of the semimajor and semiminor axes
of a probability density contour of Σ.

 sin θ– H (λ+)–0.5

L' = L* (λ+)–0.5

v

u

(u', v')
W' = W * (λ–)–0.5

 cos θ
R'

Figure 5.—Rectangular region R' in u, v-plane.

– H (λ–)–0.5
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The probability of collision for this region can now be easily
found. Since U and V are independent and the region of integra-
tion is a rectangle whose sides are parallel to the u- and v-axes,
the required probability is the product of two one-dimensional
probabilities. Each of these probabilities, in turn, is obtained by
taking the difference of their cumulative distribution functions
evaluated at the upper and lower limits of the region. In
particular,

P P L P L

P W P W

U U

V V

= ′ + ′( ) − ′ − ′( )[ ]
× ′ + ′( ) − ′ − ′( )[ ]

u u

v v

0 5 0 5

0 5 0 5 17

. .

. . ( )

where PU(u) and PV(v) are the one-dimensional cumulative
distribution functions for the standard normal distribution
given by

P p

P p

U U

V V

u

v

u

v

( ) = ( )

( ) = ( )

−∞

−∞

∫

∫

γ γ

γ γ

d

d ( )18

where pU and pV are the one-dimensional standard normal
density functions defined in equations (11b) and (11c).

Noting that commercial software is available for quickly
calculating the one-dimensional cumulative distribution func-
tion for a standard normal distribution and that the simplifying
assumption highlighted in the first approach was not taken to
derive this formula for the probability of collision, it might
seem desirable to use this formula directly. However, recall that
this formula is only good for the particular circumstance in
which the region R*

0 is a rectangle with sides parallel to the
major and minor axes of the probability contours associated
with Σ.

In the final portion of this section, the first term of the Taylor
expansion of the formula for P given in equation (17) will be
examined and rewritten to obtain again the formula derived in
the first approach (eq. (9)) for calculating the probability of
collision. In the next section, the remainder term of the Taylor
expansion will be used to compare these two approaches.

Consider the first multiplicand in equation (17). Expanding
PU in a Taylor series about the point u´ and evaluating at
u´ + 0.5L´ and u´ – 0.5L´ gives

P L P
P

L

P
L

U U
U

U

′ + ′( ) = ′( ) + ′( )

+ ′( ) +

′

′

u u
u

u

u

u

0 5 0 5

1

2
0 5

2

2
2

.
d

d
.

!

d

d
. . . . ( )19a

P L P
P

L

P
L

U U
U

U

′ − ′( ) = ′( ) − ′( )

+ ′( ) +

′

′

u u
u

u

u

u

0 5 0 5

1

2
0 5

2

2
2

.
d

d
.

!

d

d
. . . . ( )19b

Subtracting the two Taylor series gives

P L P L
P

LU U
U′ + ′( ) − ′ − ′( ) = ′( ) +

′
u u

u u
0 5 0 5. .

d

d
. . .

Proceeding in a similar way for the second multiplicand, drop-
ping higher order terms, and substituting into equation (17)
provides

P
P

L
P

WU V≈






′( )





′( )
= ′ = ′

d

d

d

d
( )

u vu u v v
20

or

P L W p pU V≈ ′ ′ ′( ) ′( )u v

since the derivative of the cumulative distribution function is
just the probability density function  (ref. 3)11. This is the same
result one would obtain by integrating the probability density
functions pU and pV over the rectangle Ŕ  and by assuming that
the probability density functions are constant at their value at
u´,v´, which is consistent with the assumption made in the first
approach.

Substituting u´ and v´ into the probability density functions
given by equations (11b) and (11c) and using the relationship
between L´W´ and L*W* of equation (15)

P
L W

T T T

≈
−

− ′ + ′( )* * . u
e ( )

σ ν ρ π1

1

2
21

2

0 5 2 2v

Next, u´ and v´ are replaced by the components of the original
covariance matrix Σ. To find (u´, v´) using the transformation
of variables from the X,Y-space to the U,V-space given earlier
by equation (10), translate the center of the region R*

0 (i.e., the
origin) by (0,–H), rotate by NT and rescale by D–1 to obtain

′
′









 = −



















+

−

u

v
H

sin

cos ( )

θ
λ

θ
λ

22

11Theorem 2, p. 61.
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Thus

′ + ′ = +





− +

+ −
u 2 2 2

2 2
v H

λ θ λ θ
λ λ

sin cos

Using equation (14) for the eigenvalues, the numerator
reduces, after some algebra, to simply σ2

T. Substituting in the
original expressions for the eigenvalues, equation (12), in the
denominator, after a little more algebra, gives

′ + ′ =
−( )u v2 2
2

2 21

H

T Tν ρ

Finally, substituting the above into equation (21) gives

P
L W

A

T T T

H

T

H

T T≈
−

≈
















− −( )[ ]

− ( )

* * .

*

eqv

.

e

e
eqv

σ ν ρ π

π σ ν

ν ρ

ν

1

1

2

2

1

2

0 5 1

0 5

2 2 2

2 2

The last term will be recognized as the value of PC derived
previously, leading to the conclusion that

P P
A

C
T

H
≈ =

















− ( )*

eqv

.
e ( )eqv

2

1
23

0 5 2 2

π σ ν
ν

Thus, PC is the first term of the Taylor series expansion of the
more precise formula given in equation (17) when applied to a
rectangular region R*

0.
As demonstrated in this and in the previous section, the

probability of collision shown in equations (9) and (23) applies
to either (1) an arbitrarily shaped region of area A*, provided
that one can assume that pC is constant over the region R*, or (2)
a rectangular region of area A* with its sides aligned with the
major and minor axes of the error ellipsoids, provided that one
can assume that the higher order terms of the Taylor expansion
are negligible. The next section evaluates the higher order
terms of the Taylor series expansion to arrive at an estimate of
the error introduced in the equation for PC by the simplifying
assumptions made in approaches 1 and 2.

Accuracy of Probability Equation

This section provides information to clarify the magnitude
of the error associated with neglecting the higher order terms of
the Taylor series expansion. This error is the same as that which
results from assuming a constant probability density over the

region R*, R*
0, or Ŕ . In general this error will be a function of

the shape and orientation of the region. However, even though
equation (9) is valid for an arbitrarily shaped region, the error
will be examined for the case of a rectangular region R*

0 with
sides parallel to the major and minor axes of the probability
contours. In particular, the more precise formula of equa-
tion (17) derived in approach 2 is approximated by a Taylor
expansion, and the remainder terms are examined. The remain-
der terms are shown to depend on the area A* of the regions R*

0
or R*.

The more precise formula derived in approach 2 is

P P L P L

P W P W

U U

V V

= ′ + ′( ) − ′ − ′( )[ ]
× ′ + ′( ) − ′ − ′( )[ ]

u u

v v

0 5 0 5

0 5 0 5 17

. .

. . ( )

where, from equations (16) and (22),

′ = − ′ = − ′ = ′ =
+ − + −

u vH H L
L

W
Wsin

;
cos

; ;
* *θ

λ
θ

λ λ λ

and H is the nominal miss distance between the orbiting space
object and the launch vehicle at the moment of closest ap-
proach,  L*  and W* are the lengths of the rectangular region R*

0,
and PU(u) and PV(v) are the one-dimensional cumulative
distribution functions for the standard normal distribution
given in equation (18).

As before, consider a series representation of the first multi-
plicand in the formula above, but this time focus on the higher
order terms. First, expanding PU in a Taylor series about the
point ú  and evaluating at u´ + 0.5L´ and ú – 0.5L´ gives (as
before in equation (19))

P L P

P
L

P
L R

U U

U U

′ + ′( ) = ′( )

+ ′( ) + ′( ) +
′ ′

+

u u

u

d

duu

2

2
u

0 5

0 5
1

2
0 5 2

3

.

d

d
.

!
.

P L P

P
L

P
L R

U U

U U

′ − ′( ) = ′( )

− ′( ) + ′( ) +
′ ′

−

u u

u

d

duu

2

2
u

0 5

0 5
1

2
0 5 2

3

.

d

d
.

!
.

where using Lagrange’s form of the remainder (ref. 2)12 gives

R
P

L LU
3

3

3
31

3
0 5 0 5+ = ′( ) ∋ ′ ≤ ≤ ′ + ′

!

d

d
. , for some ˜ ˜ .

˜u
u u u u

u

12Table 20, formulas 20.1 and 20.2, p. 110.
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R
P

L LU
3

3

3
31

3
0 5 0 5− = − ′( ) ∋ ′ − ′ ≤ ≤ ′

!

d

d
. , for some ˜ . ˜

˜u
u u u u

u

Subtracting the two truncated Taylor series gives

P L P L
P

L RU U
U

U′ + ′( ) − ′ − ′( ) = ′( ) +
′

u u
u u

0 5 0 5. .
d

d

where RU = R3+ – R3–.
To estimate the remainder term RU, note that

R R R

M L M L

M M L

U ≤ +

≤ ′( ) + ′( )

= +( ) ′( )

+ −

+ −

+ −

3 3

3 3

3

1

3
0 5

1

3
0 5

1

48

!
.

!
.

where M+ and M– are defined such that

d

d
.

d

d
.

3

3

3

3

0 5

0 5

P
M L

P
M L

U

U

u
u u u u

u
u u u u

≤ ∀ ∋ ′ ≤ ≤ ′ + ′

≤ ∀ ∋ ′ − ′ ≤ ≤ ′

+

−

To estimate M+ and M–, recall that the derivative of PU is the
probability density function pU. Thus,

d

d

d

d

e

d

d
e

.

.

2

2

0 5

3

3

2
0 5

2

1

2

2

2

P p

P

U U

U

u u

u

u

u

u

u

=

= −

= −

−

−

π

π

The third derivative is shown in figure 6. Note that the
maximum of the absolute value of the third derivative of PU
occurs at u = 0 and has a value of (2π)–0.5, or 0.399. Using this
conservative value for M+ and M– will be sufficient for the
discussion here. (If the entire interval of length L´ centered at
u´ lies more than four units away from the origin, the values of
M+ and M– and the error terms become very much smaller.)
Substituting (2π)–0.5 for M+ and M–  gives

R LU ≤ ′1

24 2
243

π
( )

The same procedure can be carried out for the second multipli-
cand in equation (17) to obtain

P W P W
P

W RV V
V

V′ + ′( ) − ′ − ′( ) = ′( ) +
′

v v
v v

0 5 0 5. .
d

d

where

R WV ≤ ′1

24 2
253

π
( )

Substituting into equation (17) produces

P
P

L R
P

W R

P P
L W

P
R W

P
R L R R

U
U

V
V

U V

V
U

U
V U V

= ′ +






′ +






=











′ ′

+






′ +






′ +

′ ′

′ ′

′ ′

d

d

d

d

d

d

d

d

d

d

d

d

u v

u v

v u

u v

u v

v u

This equation can be reduced to

P P RC T= +

Figure 6.—Third derivative of standard normal cumulative 
   distribution function, PU.
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by recognizing that the first term is PC from equations (20) and
(23), where RT consists of the three remainder terms and can be
bounded for any u´, v´, L´, and W´ by noting that

d

d
;

d

d
( )

P PU V

u v
u, v≤ ≤ ∀1

2

1

2
26

π π

Then

R
P

R W
P

R L R R

L W L W

L W

L W L L W W

L

T
V

U
U

V U V≤






′ +






′ +

≤ ′ ′ + ′ ′

+ ′ ′

= ′ ′( ) ′ + ′ ′( ) ′

+ ′ ′

′ ′

d

d

d

dv uv u

1

2

1

24 2

1

2

1

24 2

1

24 2

1

24 2

1

48

1

48

1

1152

3 3

3 3

2 2

π π π π

π π

π π

π
WW( )3 27( )

To examine these remainder terms, note that the area of the
probability density contour defined by

x y
x

y
[ ] 





=−Σ 1 1 28( )

can be written as

Aσ π λ λ= + − ( )29

Thus,

′ ′ = =
+ −

L W
L W A

A

* * *
( )

λ λ
π σ 30

That is, L´W´ is proportional to the ratio of the area A* of the
region R*  to the area of the probability density contour defined
by equation (28). Finally, substituting into equation (27),

R
A

A
L W

A

A
T ≤ ′ + ′( ) +







1

48 1152
2 2

2 3* *

σ σ
π

or

R
A

A

L W A

A
T ≤ +







+






+ −

1

48 1152
31

2 2 2 3* * * *
( )σ σλ λ

π

Equation (31) provides an upper bound for the absolute value
of the error produced by any one of the following:

(1) Truncating the Taylor series expansion of equation (17)
(2) Assuming a constant probability density pUpV whose

value is taken at the center of Ŕ  (see eq. (20))
(3) Assuming a constant probability density function p2

whose value is taken at the center of R* (see eq. (4))

In all cases, the bound is valid only when the regions Ŕ  (or R*
0)

or R*  are rectangular and properly aligned.

The following observations can be made regarding equation
(31) for the error term |RT|:

(1) All terms are functions of the ratio of the physical size of
the two colliding objects to the size of the probability density
contour associated with the covariance matrix Σ.

(2) For cases in which the two terms inside the first parenthe-
ses are approximately equal, this sum could be replaced with
twice L´W´ or by applying equation (30), with 2π times the ratio
of the areas A* to Aσ, thus providing an error bound that depends
only on this area ratio.

(3) The error bound is not a function of the separation
distance H because of the conservative assumptions made in the
derivation of |RT| in equations (24) to (26). In particular,
eliminating the dependency of |RT| on u´ and v´ removed the
dependency on H.

(4) Terms Aσ and λ– (or λ+ if νT
2  > σT

2 ) are zero when the
correlation ρT of the covariance matrix Σ becomes 1.0. In this
case, the bound for the error RT becomes infinite. However, as
is shown in appendix A, for values of ρT ≤ 0.95, the error RT is
very small.

In addition, it can be shown that if the rectangular region R*
0

is oriented such that the long side of the rectangle is parallel to
the minor axis of the density contour, the error bound will be
larger than that obtained if the long side is parallel to the major
axis of the density contour. This alignment occurs if L* < W*

and λ+ > λ–, or if L* > W*  and λ+ < λ–.

The bound for the remainder term can be rewritten in terms
of the elements of Σ (σT, νT, and ρT) to obtain
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R
A

L W L W

A

T

T

T T T T T T T

T

T

≤

×
+ + − − − +

+













( )( ) ( ) ( )






















*

eqv

* * * *

eqv

eqv

*

2

1

2
4

48

1

1152

2 2 2 2 2 2 2 2 2 2 2

2 2

3

3 3

π σ ν

σ ν σ ν ρ σ ν

σ ν

π σ ν

Note that if ρT  is 1, then νeqv = 0.
One final note in this section should be made. The estimate for

the remainder term given herein can be quite conservative. A
better estimate can sometimes be obtained when the values of
u´, L´, v´, and W´ allow utilizing less conservative estimates for

R R
P P

U V
U V, ,

d

d
, and

d

du v

In these cases, the error becomes a function of the minimum
separation distance H.

Discussion of Results

Using two different approaches has shown that the probabil-
ity of collision of two objects is given by

P
A

C
T

H
=

















− ( )*

eqv

.
e ( )eqv

2

1
9

0 5 2 2

π σ ν
ν

where

ν ν ρeqv = −T T1 2

and the variables are defined as follows:

νT combined position error in y-direction
σT combined position error in x-direction
ρT correlation of combined covariance matrix

A* area of a composite region, centered at one object such that
if center of second object is within that region, a collision
results

H nominal separation distance of two objects at point of
closest approach

The area A* needs some additional explanation. To begin
with, A* is a function of the actual cross-sectional areas and the
shape of the colliding objects as they are projected into the
x,y-plane, which in turn is a function of the actual object sizes
and their orientations relative to the RMCS reference frame. In
practice, the actual object sizes are not always known and
certainly the orientations of the objects are unknown. At best,
what is known is the radar cross section of the objects and the
object type (satellite, rocket body, or debris) from which some
information about the object size can be deduced. However,
even if the sizes and shapes of the objects in the x,y-plane are
known, there remains the question of how to compute A* . To
shed some light on this, consider first the situation in which
both objects present a circular cross section to the x,y-plane as
shown in figure 3. If the circular cross-sections are of area
A1 and A2 and of radius r1 and r2, respectively, then

A r r

A A A A

A A

* = +( )

= + +

= +( )

π 1 2
2

1 2 1 2

1 2
2

2

Similarly, if both objects project as squares with areas A1 and
A2 and sides of length l1 and l2, respectively, then

A l l

A A A A

A A

* = +( )

= + +

= +( )

1 2
2

1 2 1 2

1 2
2

2

For rectangles, the situation is slightly more complicated.
Consider two rectangles whose sides are parallel to the x- and
y-axes. Let a1 and a2 be the lengths of the two rectangles in the
x-direction and b1 and b2 be the lengths of the rectangles in the
y-direction. Further let

A a b

A a b

k
a

b

k
a

b

1 1 1

2 2 2

1
1

1

2
2

2

= ( )( )
= ( )( )

=

=
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Then

A A A
k k

k k
A A* = + + +





1 2

1 2

1 2
1 2

The minimum value of the factor k k k k1 2 1 2+( )  is 2, which
is the case when k1 = k2; that is, when the two rectangles have
the same aspect ratio. A special case of this is when k1 = k2 = 1,
in which both rectangles are squares. When the two constants
are not equal, the above factor is mathematically unbounded. In
reality, assuming plausible aspect ratios, the factor can easily
become much larger than 2. Thus, for two rectangles at least, it

is seen that A*  is always larger than A A1 2
2

+( ) , which is

always larger than the sum of the two areas and depending on
the shapes of the two rectangles, can become quite large.

Similar calculations for other simple shapes have been made
and the resultant area A*  has always been found to be equal to

or larger than A A1 2
2

+( ) .
Next, the expression for the probability of collision is exam-

ined in greater detail. The probability of collision is illustrated
in figure 7, which graphs PC as a function of H using the values
A* = 500 m2, σT  = 2 km, and νeqv is represented parametrically
from 1 to 20 km.

From an examination of equation (9) and figure 7, the
following conclusions can be drawn:

(1) The value of PC is directly proportional to A*  and is
inversely proportional to σT.

(2) The value of PC declines monotonically with increasing
values of H.

(3) The term PC is a function of the combined covariance
matrix of objects 1 and 2 only.

(4) The value of νeqv that results in the highest probability of
collision when H = 0 results in the lowest probability of
collision as H increases.

(5) The probability of collision falls off most rapidly with
increasing H for small values of νeqv.

By differentiating the expression for PC with respect to νeqv
and equating the result to zero (providing that νeqv ≠ 0 and
H ≠ 0), it is easily seen that the maximum probability of
collision occurs when νeqv = H. Substituting H for νeqv then
yields the maximum probability of collision:

P
A

HC
T

( ) =
−

max

. *e
( )

0 5

2
32

π σ

Thus, it is seen that the maximum probability of collision depends
only on the values of A* , σT, and H, where H = νeqv > 0.

Returning to equation (9), if H = 0, then the probability of
collision is

P
A

C H
T

( ) ==0
1

2π σ ν

*

eqv

This equation shows that if two large objects (e.g., A*  is
2000 m2) are nominally on a collision course (H = 0) and the
combined one-sigma position errors in the x- and y-directions
are both only 0.5 km, then the probability of collision is still less
than 13 in 10 000.
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Figure 7.—Probability of collision PC versus miss distance H. Area of region R*, A*, 
   500 m2; 1-sigma position error measured in x-direction of RMCS, sT, 2 km.
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Application of Results to Collision Avoidance (COLA)
Analysis

To use the probability of collision equation to perform a
COLA analysis, ideally this procedure would be followed:

(1) Propagate the trajectories of a space object and the
launch vehicle to the point of closest approach based on an
assumed launch vehicle liftoff time.

(2) Determine the nominal closest approach distance H.
(3) Compute the transformation matrix M to convert from

the coordinate system used for the state vector propagation into
the RMCS.

(4) Determine the covariance matrices of both objects at the
time of closest approach.

(5) Transform the covariance matrices associated with both
conjuncting objects into the RMCS.

(6) Reduce the 3×3 covariance matrices to 2×2 covariance
matrices by deleting the row and column corresponding to the
z-direction.

(7) Add the two covariance matrices to determine σT and νeqv.
(8) Compute or assume a value for the area A*  by assuming

some knowledge of the type of space object in close conjunc-
tion with the launch vehicle.

(9) Use equation (9) to compute the probability of collision.
(10) If the probability of collision is larger than some prede-

termined threshold value, launch would not be attempted at the
liftoff time assumed in step 1.

One modification to this procedure may be necessary. As was
mentioned previously, liftoff may not occur at the exact time
assumed in step 1 because of a tolerance that may be as large as
several seconds. Any error in the liftoff time results in the
launch vehicle arriving at a specific point in space either early
or late. With space objects potentially traveling at a velocity of
10 km/s, the actual miss distance could be substantially less
than that computed in step 2. Some methods for dealing with
this problem follow:

(1) Reduce the miss distance H as computed in step 2 by the
worst-case distance that a space object could travel if launch
occurred at the extreme ends of the tolerance range. For
example, if the tolerance is ±2 s and the maximum space object
velocity is 10 km/s, reduce the computed H by 20 km. This is
equivalent to the approach taken for Cassini as described in
more detail in appendix A.

(2) Use method 1 but instead of assuming that the velocity of
the space object is 10 km/s, assume the worst-case velocity at
the altitude of the conjunction. With this method, H would be
reduced by a lesser amount for conjunctions that occur at higher
altitudes.

(3) Perform a COLA analysis over small time increments
covering the entire liftoff time tolerance range. If the probabil-
ity criterion were to be violated at any time within the tolerance

range, no launch attempt would be made at the corresponding
nominal liftoff time.

The preceding discussion assumes that the covariance matrices
for both objects are known. The next section discusses a
procedure that can be used if one or both covariance matrices
are not known.

Collision Avoidance Analysis With Unknown Covariance
Matrices

When the covariance matrix for one or both of the objects is
unknown, the procedure for calculating the probability of col-
lision, as given in the previous section, is not possible and a
different approach is suggested. This section shows that it is
possible to determine a minimum miss distance which will ensure
that the probability of collision is less than some desired value
regardless of the position errors or correlations of either object.

The first step in this analysis is to solve equation (9) for H,
yielding the following result:

H
P

A

C T
min eqv

eqv
*. ln ( )= −( ) 













2 0

2
332ν

π σ ν

For any given covariance matrix, this equation gives the mini-
mum nominal separation distance Hmin required for any speci-
fied value of PC. If the nominal separation distance is greater
than Hmin, the probability of collision will be less than PC.

Equation (33) is shown graphically in figure 8 using the
following numeric values: PC = 1.0×10–6, A* = 500 m2, and σT
parametrically from 2 to 10 km. Each curve in the figure
represents the variation of Hmin as a function of νeqv for a
constant value of σT. Note that for a constant σT , as νeqv is
increased the separation distance required to maintain a prob-
ability of collision of PC = 1.0×10–6 first rises, reaches a
maximum, and then declines again. This maximum separation
distance is designated Hmax and by differentiating equation (33)
with respect to νeqv is found to be

H
A

PT C
max

.
*

e= −0 5

2πσ

This is the same as equation (32) for (PC)max derived earlier,
only with the terms rearranged. The value of νeqv that gives the
maximum value of Hmax is designated νmax and, recalling from
before, is equal to Hmax:

ν
πσmax max

.
*

e ( )= = −H
A

PT C

0 5

2
34



NASA/TP—1999–208852 19

Thus, if νeqv of the combined covariance matrices of objects 1
and 2 is unknown, one can assume that νeqv = νmax. The
required minimum separation distance to ensure that the prob-
ability of collision be less than PC is Hmax. The computation of
Hmax still requires knowledge of the value of σT . Under worst-
case assumptions, the absolute largest separation distance
required would be the value of Hmax when σT assumes its
smallest possible value σmin. This value is designated H*:

H
A

PC

* .
*

min
e ( )= −0 5

2
35

πσ

As long as the separation distance between the launch vehicle
and any space object is greater than H*, the probability of
collision will always be less than PC, regardless of the values of
the launch vehicle or the space object covariance matrices. In
fact, the only time that the probability of collision will be equal
to PC is when νeqv = νmax and σT  = σmin. Using this procedure,
the only knowledge required of the two covariance matrices is
the value of σmin.

For Cassini (see appendix A for detailed description), the
value of σmin was estimated, maximum values of A* were
computed for several classes of orbiting objects, and a criterion
for PC was established. Based on these values, the absolute
largest required nominal separation distance H* was computed
for each class of orbiting objects. Liftoff would not have been
attempted anytime that the COLA analysis revealed a violation
of the required miss distance H*.

Alternative Approaches to Computing Probability

The foregoing sections illustrate the usefulness of deriving
an analytical expression for the probability of collision and the

insights that can be gained by examination of that expression.
An alternative might be to calculate the probability of collision
numerically, as alluded to near the end of the section Probabil-
ity of Collision, Approach 2. Recall that equation (17) gave the
probability of collision formula that would allow the use of
commercial software for calculating the one-dimensional cu-
mulative distribution function for a standard normal distribu-
tion. It has the advantage of not requiring the simplification
highlighted in the first approach to modeling that probability of
collision, but it does require that the region R*

0 be rectangular
and oriented in the same direction as the probability density
contour of the covariance matrix.

Several steps are required to use this alternative approach.
The first is to establish the rectangle discussed immediately
above. If the region R*

0 is not already rectangular, a rectangle
meeting all the criteria can be formed to be large enough to
encompass all the true region R*

0. This would be a conservative
approach because the probability obtained would be larger
(possibly much larger) than the probability that the objects
would come close enough to be within the true region R*

0.
The next step is to calculate the eigenvalues using equa-

tion (12) or (14) and to obtain the angle of orientation θ using
equation (13). Then u´, v´, L´, and W´ can be calculated using
equations (22) and (16). Finally, the four values of the cumula-
tive distribution function can be found and combined to obtain
the (conservative) probability of collision.

The authors wish to suggest an additional approach that would
not be burdened by the requirement of a rectangular region R*

0
but would have a more involved setup and would be more com-
putationally expensive. Such an approach would require the
transformation of the (now arbitrary) region R*

0 to Ŕ  either
using the transformation from the x,y-plane to the u,v-plane
given in equation (10) to obtain the region Ŕ  parametrically (if
R*

0 is given explicitly or parametrically) or using the inverse of

0
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that transformation to obtain Ŕ  implicitly (if R*
0 is given

implicitly). Then, one must integrate (perhaps numerically) the
product of two standard normal density functions (for which
commercial software is available) over the region Ŕ . Note that
the transformation referred to herein also requires the calcula-
tion of the angle θ and the eigenvalues.

Summary of Results

A model is presented for the determination of the probability
of collision between a launch vehicle/payload combination and
any one of the many tracked objects orbiting the Earth. The
model was specifically developed for the Cassini mission
(launched in October 1997) but is clearly applicable to other
launches. It consists of a closed-form solution that shows the
effect each of the independent parameters has on the probability
of collision. The model can be applied to compute the probabil-
ity of collision throughout a daily launch window and thereby
afford the opportunity to avoid launching at those times within
that window when the probability of collision is unacceptably
high. For a given maximum probability of collision and prior
knowledge of the objects’ position uncertainties, only knowl-
edge of the nominal closest approach distance is required to
make this launch/no launch decision.

Two approaches are presented for deriving this model. One
uses a practical engineering approach and the other, a more
mathematically rigorous approach. Each uses different but
equivalent simplifying assumptions, presents the material from
different points of view, and produces the same simplified
model. Using the second approach results in the development
of an expression for the magnitude of the error introduced by
the simplifying assumption.

The simplified model developed by both approaches expresses
the probability of collision as a function of

(1) A composite area related to the size of the two objects
(2) The position covariance matrices of both objects
(3) The nominal separation distance measured at the point of

closest approach

More specifically, the simplified model for the probability of
collision is shown to be

P
A

C
T

H
=

















− ( )*

eqv

.
e ( )eqv

2

1
9

0 5 2 2

π σ ν
ν

where

ν ν ρeqv = −T T1 2

and the variables are defined as follows:

A* area of region centered at one object such that if the
center of the second object is within the region, a col-
lision results

σ2
T,ν2

T variances in the RMCS x- and y-directions of covari-
ance matrix obtained by adding the position covari-
ance matrices of the launch vehicle and orbiting object
at the point of nominally closest approach and elimi-
nating the row and column associated with the
z-direction

ρT correlation coefficient of this combined 2×2 covari-
ance matrix

H nominal separation distance of two objects at the point
of closest approach

Further analysis allows the model to be used in cases when
the covariance matrices (and therefore σT, νT, and ρT) are not
completely known and involves the computation of a minimum
required separation distance under worst-case assumptions
regarding the two-position covariance matrices. This modified
approach assures that as long as the nominal separation distance
is greater than the minimum required, an allowable probability
of collision will not be exceeded.

The application of these results to the Cassini mission is
provided in appendix A, which also discusses some other
factors that must be considered and addresses the impact on the
available launch window of limiting the probability of colli-
sion. Using Cassini data, an estimate of the error in this equation
resulting from the simplifying assumption of both approaches
suggests that the model is acceptable for most launches.

Glenn Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, April 9, 1999
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The analysis developed in this report was applied to the
COLA analysis for the Cassini mission. Detailed descriptions
of how the miss criteria were developed and their effect on the
launch window are described. Also presented are data for all
identified conjunctions that violated the miss criteria for the
actual day of launch. The discussion concludes with an assess-
ment of the accuracy of the probability analysis.

For the Cassini mission, accurate, reliable covariance matrices
for orbiting space objects were not available. This situation
required that the approach to be used for COLA analysis when
covariance matrices are not known was that presented in the
section Collision Avoidance Analysis With Unknown Covari-
ance Matrices. The launch/no launch decision was made by
comparing the nominal miss distance H to criteria that were
determined weeks before launch. If the distance from the launch
vehicle to all space objects exceeded the miss criteria, the launch
could proceed.

A severe schedule constraint dictated that the development of
miss criteria rely heavily on making worst-case assumptions
rather than on attempting to refine the accuracy of the data used.
Initially some concern was that the use of worst-case assump-
tions would lead to miss criteria so large that the launch
availability would be severely impacted; therefore, to maintain
launch availability, it was necessary to increase the maximum
allowed probability of collision from 1.0×10–6 to 1.0×10–5. It
is safe to state however, that although the miss criteria were
based on a probability of collision of 1.0×10–5, the numerous
worst-case assumptions that were made resulted in a consider-
ably lower actual probability of collision.

Development of Miss Criteria

In the absence of covariance data, the miss distance was
computed by using

H
A

PC

* .
*

min
e ( )= −0 5

2
35

πσ
or

H
A

PC

*
*

min
. ( )= 0 09653 36

σ

and by adjusting the results for a number of factors, including
the worst-case liftoff time error.

Three items had to be determined to calculate the miss
distance: (1) the value of σmin, (2) suitable values of A*, and (3)
the largest acceptable collision probability PC.

Selecting a value of σmin.—To determine the value of σmin,
the conservative approach was to assume that

σ σ σmin min min= ( ) + ( )1 2

The best accuracy with which the position of space objects is
known depends on several factors, including the type of orbit
the object is in and the radar cross section of the object. Air
Force personnel estimated that the position error for some space
objects could be as low as 200 to 300 m. Assuming that this
position error was in the x-direction of the RMCS frame led to
the conclusion that min (σ1) was 200 m.

To determine the smallest position error for the launch
vehicle, an error analysis was performed for a typical Cassini
trajectory. The analysis computed covariance matrices at fixed
times throughout the trajectory. Eigenvalues, the square root of
which represents the position errors, were computed for each
covariance matrix and the smallest eigenvalue at each time point
was selected. Examination of these data revealed that the best
position accuracy was achieved near the first main engine
cutoff (MECO1)13 of the trajectory and that the position error at
that point was approximately 300 m. Launch vehicle position
errors increased steadily after achieving the minimum value and
eventually exceeded 1.6 km. The conservative approach, using
the minimum launch vehicle position error and assuming it to
be in the x-direction of the RMCS, resulted in a min (σ2) of
300 m. Thus, combining these two results gives a σmin of
500 m.

Selecting values of A* .—Prior to determining a value of A*

for use in the calculation of miss distance, all space objects were
divided into the following categories:

(1) Manned objects (or objects capable of being manned)
(2) Satellites (active or decommissioned)
(3) Spent rocket bodies (including platforms)
(4) Debris
(5) Uncategorized objects or objects classified for national

security

A maximum area A1 was determined for each space object
category and an additional area A2 was determined for the
launch vehicle. Table I shows the areas used for each object
class. The area was taken to be the products of the two largest
overall dimensions. These values are based on a limited search
of available data, and based on the perceived quality or quantity
of the data reviewed, an adjustment factor was applied to
further increase the areas.

For the portion of flight subject to the COLA analysis, the
launch vehicle consisted of the Titan Stage II, the Centaur, and

13This refers to the first shutdown of the Centaur main engines that were
ignited and shut down twice during the Cassini launch.

Appendix A

Application of Probability Analysis to Cassini Mission
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the spacecraft. The respective areas are approximately 30, 35,
and 35 m2. Even though the stages are jettisoned (Titan
Stage II first and Centaur later), thereby substantially reducing
the launch vehicle size, the area of the launch vehicle was
conservatively taken to be 100 m2 for the entire trajectory.

Given these values of A1 and A2, the composite area A* was then

calculated as A A A* = +( )1 2
2
. The resultant values of A*

are shown in table II.
Maximum allowable collision probability.—If the launch

vehicle and a space object are on trajectories that result in a zero
nominal miss distance, the probability of collision, using the
equations derived in this report, could be as high as 10–4 to
10–3 depending on the size of the space object.

For the Cassini mission, it was desired to limit the maximum
probability of collision to values less than or equal to 1.0×10–6.
A value of 1.0×10–6 is consistent with values used in other
aspects of the launch approval process. However, the impact on
the launch window was unacceptably large in that nearly one-
half of the launch window was lost. Since the values chosen
for σmin and A* are extremely conservative, it was decided that
a maximum probability of 1.0×10–5 would be acceptable.

Computation of minimum miss distances.—The miss dis-
tance was shown in equation (36) to be

H
A

PC

*
*

min
. ( )= 0 09653 36

σ

Substituting the values determined in the previous section gives
the miss distances, based purely on probability considerations
(table III).

Adjustments to minimum miss distances.—Several adjust-
ments were made to the computed minimum miss distances:

(1) The miss distance for manned objects was increased to
200 km to be consistent with the independent safety COLA
analysis performed by the Eastern Range.

(2) Any miss distances less than 10 km were increased to 10 km.
(3) A bias of 20 km was added to all miss distances (except

that for manned objects) to account for tolerances in the liftoff
time.

Liftoff is nominally scheduled to occur on the whole minute.
For the Cassini mission, this was subject to a tolerance of –1, +3
sec. To accommodate this tolerance, the COLA analysis was
performed for an assumed liftoff time 1 sec after the whole
minute, which (given the tolerance) meant that actual liftoff
would occur ±2 s from the time analyzed. The aforementioned
bias of 20 km provides a margin of safety for spacecraft
traveling at a worst-case velocity of 10 km/s.

Table IV gives the final minimum required miss distances for
the Cassini mission and takes into account the three adjust-
ments and rounding the results. These miss distances assure a
collision probability of less than 1.0×10–5. However, given the
conservatism used throughout, the actual collision probabili-
ties are considerably less.

After finalizing these miss distances, the impact on launch
window was evaluated. It was estimated that on average, 12 of
141 launch opportunities per daily launch window would be
closed because of a violation of the COLA miss criteria.

TABLE III.—REQUIRED MISS DISTANCES BASED
ONLY ON PROBABILITY CALCULATIONS

Object class Minimum miss
distances,

km

Manned objects
Satellites
Upper stages and platforms
Debris
Uncategorized and/or classified objects

35.9
14.4
5.9
3.3

14.4

TABLE IV.—REQUIRED MISS DISTANCES
AFTER ADJUSTMENTS

Object class Final minimum
miss distances,

km

Manned objects
Satellites
Upper stages and platforms
Debris
Uncategorized and/or classified objects

200
35
30
30
35

TABLE I.—MAXIMUM CROSS-SECTIONAL AREAS OF
VARIOUS OBJECTS

Object class Area,
m2

Area, A1

Manned objects
Satellites
Upper stages and platforms
Debris
Uncategorized and/or classified objects

1100
300
55
10

300
Area, A2

Launch vehiclea 100
aConsists of Titan stage II, Centaur, and the spacecraft.

TABLE II.—VALUES OF A*  BY OBJECT CLASS
Object class Area, A* ,

m2

Manned objects
Satellites
Upper stages and platforms
Debris
Uncategorized and/or classified objects

1863
746
303
173

 746
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Collision Avoidance Analysis Process

The miss criteria described in the previous section were estab-
lished and approved several weeks before launch. Several days
before launch, the trajectory generation process was initiated. The
full complement of 182 daily trajectories was generated for
several launch days and stored in the computer system. Approxi-
mately 48 and 24 hr prior to the planned launch, a COLA analysis
was performed to identify those space objects that were most
likely to come within proximity of the launch vehicle. The Air
Force’s 1st CACS then focused on these identified space objects
to improve the orbit prediction accuracy.

Approximately 4 hr before launch, the conjunction analyzer
was executed at Cheyenne Mountain Operations Center
(CMOC) and simultaneously at the Naval Space Command in
Dahlgren, VA. The execution time of the conjunction analyzer
at CMOC was approximately 25 min.14 The conjunction ana-
lyzer results from both organizations were compared and
reviewed prior to transferring them electronically to the Eastern
Range.

The Eastern Range performed the postprocessing and inde-
pendently performed the safety COLA. The results of the
mission assurance and safety COLA were combined and sum-
mary charts showing the unacceptable launch times were
produced. After review and approval by the launch director, the
charts were distributed to the appropriate launch personnel
approximately 1 hr before the opening of the launch window.

Collision Avoidance Analysis Results

Table V gives the COLA analysis results for the October 15,
1997 launch of the Cassini spacecraft. For this day, the launch
window opened at 8:43 Greenwich mean time (G.m.t) and
closed at 11:03, giving a launch window duration of 140 min.
With launch planned to occur on the whole minute, 141 launch
opportunities were provided. For the first 40 opportunities, the
flight azimuth was 93°; for the next 41 opportunities, the flight
azimuth could be either 93° or 97° for 82 possible trajectories;
and for the last 60 opportunities, the flight azimuth was 97°. The
actual liftoff time was 8:43:0.582, which was 0.582 sec later
than the targeted liftoff time but well within the tolerance.

The COLA analysis identified 17 trajectories for which the
preestablished miss criteria were violated. These 17 trajectories
affected 14 of 141 launch opportunities. Of the 14 launch
opportunities affected, 3 occurred during a time in the launch
window when either a 93° or 97° launch azimuth was possible.

Each of the 17 trajectories that violated the miss criterion
involved only a single conjunction with an orbiting space object
that exceeded the allowable probability of collision. For each
identified conjunction, table V lists some of the data of interest,
including the class of object involved, the flight azimuth, the
time from liftoff when the conjunction would have occurred,
the predicted nominal miss distance, the flight phase, and the
altitude.

14The conjunction analyzer was executed on a Silicon Graphics work-
station (Octane/SI) with a 175-MHz R10000 CPU, 192-MB memory, and
13-GB hard disk.

TABLE V.— COLA RESULTS FOR OCTOBER 15, 1997
[Arranged chronologically with time into launch window.]

Liftoff
time,
G.m.t.

Object class Flight
azimuth,

deg

Mission elapsed
time of closest

approach,
s

Miss
criteria,

km

Nominal
miss

distance,
km

Phase of
flight a

Altitude of
potential
collision,

km

Launch vehicle/
space vehicle

relative velocity,
km/s

8:46 Satellite 93 2250.208 35 32.2 4 639.2 11.4
8:47 Debris 93 2221.969 30 13.6 4 572.5 11.5
8:49 Debris 93 2297.930 30 17.7 4 813.6 11.3
8:54 Debris 93 2326.872 30 13.3 4 970.0 11.2
9:10 Unidentified object 93 2194.960 35 30.6 4 697.0 11.4
9:29 Satellite 93 1376.469 35 27.2 2 171.0 7.9
9:30 Debris 93

97
2199.076
2198.463

30 5.1
8.7

4
4

912.7
914.7

11.3
11.3

9:38 Classified object 93
97

2195.403
2194.295

35 30.8
27.0

4
4

988.5
989.9

11.2
11.2

9:44 MIR Space Station 93
97

1801.334
1799.714

200 172.0
171.4

3
3

222.6
224.2

9.5
9.3

10:06 Debris 97 2133.053 30 27.4 4 1084.5 11.1
10:12 Satellite 97 1985.984 35 34.6 4 640.6 11.4
10:16 Rocket body 97 1306.811 30 18.3 2 170.0 7.9
10:33 Debris 97 1868.192 30 13.1 4 490.1 11.5
11:02 Satellite 97 2065.356 35 28.3 4 1473.6 10.9

a1, Centaur first burn; 2, park orbit; 3, Centaur second burn; 4, between Centaur second main engine cutoff and space
    vehicle separation.
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Figure 9.—October 15 Cassini launch window. Darkened areas represent times during which launch is not allowed
   because of risk of collision with orbiting object.
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TABLE VI.— ASSUMPTIONS RELATED TO OBJECT SIZES

Object class Area of
region R* ,

A* ,
m2

Length of sides of
rectangular region
R0

* along direction
given by θ,

L* ,
m

Length of sides of
rectangular region
R0

* along direction
given by θ + 90°

W* ,
m

Manned Objects
Satellitesa

Upper stages and platforms
Debris

1863
746
303
173

61.0
38.6
24.6
18.6

30.5
19.3
12.3
9.3

aIncludes uncategorized and classified objects.

TABLE VII.—VALUES USED TO COMPUTE THE BOUND OF zRT  z
Terms related to
maximum error

Manned objects Satellites Upper stages
and platforms

Debris

σT, m 500 500 500 500
ν T, m 35 900 14 400 5900 3300

For ρ = 0
λ –, m

2

λ +, m
2

Aσ, m2

1.29×109

2.50×105

5.64×107

2.07×108

2.50×105

2.26×107

3.48×107

2.50×105

9.27×106

1.09×107

2.50×105

5.18×106

For ρ = 0.50
λ –, m

2

λ +, m
2

Aσ, m2

1.29×109

1.87×105

4.88×107

2.07×108

1.87×105

1.96×107

3.49×107

1.87×105

8.03×106

1.10×107

1.86×105

4.49×106

For ρ = 0.90
λ –, m

2

λ +, m
2

A σ, m2

1.29×109

4.75×104

2.46×107

2.08×108

4.75×104

9.86×106

3.50×107

4.72×104

4.04×106

1.11×107

4.66×104

2.26×106

For ρ = 0.95
λ –, m

2

λ +, m
2

Aσ, m2

1.29×109

2.44×104

1.76×107

2.08×108

2.43×104

7.06×106

3.50×107

2.42×104

2.89×106

1.11×107

2.39×104

1.62×106

TABLE VIII.—UPPER BOUNDS  OF |RT| FOR CASSINI
Object class ρ = 0 ρ = 0.50 ρ = 0.90 ρ = 0.95

Manned objects 1.02×10–8 1.58×10–8 1.24×10–7 3.37×10–7

Satellites 4.10×10–9 6.31×10–9 4.95×10–8 1.35×10–7

Upper stages and platforms1.65×10–9 2.55×10–9 2.00×10–8 5.45×10–8

Debris 9.68×10–10 1.50×10–9 1.18×10–8 3.23×10–8
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Of the 17 possible conjunctions identified for an October 15
launch, 2 occurred in park orbit, 2 occurred during the Centaur
second main engine burn, and the remaining 13 occurred after
the second Centaur main engine cutoff (MECO2) but before
spacecraft separation. In terms of altitude, the identified con-
junctions occurred between 170 and 1474 km.

Figure 9 illustrates the effect of COLA closures on the launch
window. The bar represents the entire 140-min launch window;
the shaded areas represent lost launch opportunities due to a
potential for collision with an orbiting object.

Accuracy Assessment of Cassini Probability Calculations

The miss distances established for the Cassini mission and
shown in table III are based on a maximum allowable probabil-
ity of collision of 1.0×10–5. This section uses equation (31) to
address the error in that probability value. The maximum error
is a function of terms related to the covariance matrices and to
terms related to the object sizes. That the object sizes affect the
error term means that the error will be different for each object
class. The following sections define the values used to compute
the magnitude of the bound for |RT|.

Assumed values for L*, W*, and A* .—Table II gives the values
of A* for each object class. The values of L* and W* are derived
by assuming somewhat arbitrarily that L* = 2(W*). With this
assumption, the values shown in table VI are obtained.

Assumed values for Aσ, λ+, and λ–.—Recall that the value
of σT assumed for the Cassini analysis was 500 m. Recall also
from equation (34) that the value of νT = νmax = Hmax. The
value of Hmax is the required miss distance given in table III.
Thus, using these values of σT and νT and treating the unknown

correlation parametrically yields from equation (12) the values
of λ– and λ+ shown in table VII. (Note that the ± in equa-
tion (12) had to be reversed because νT is greater than σT, as
discussed in the text preceding equation (13).) Then, applying
equation (29) gives the values of Aσ shown in table VII.

Computation of the upper bound for |RT|.—Substituting the
values from tables VI and VII into equation (31) gives the
results shown in table VIII. Note that since νT is greater than σT,
the minor axis of the probability contour is along the direction
given by θ. The dimension of the rectangular region R*

0 that is
along the direction given by θ is by definition L*. Since the
orientation of the rectangle is unknown, L* can be taken to be
either the long or the short side of the rectangle. As an added
measure of conservatism, the length of L* was taken to be the
larger of the two sides; thus, the long side of the region R*

0 is
parallel to the minor axis of the probability density contour.
This yields the largest value of |RT| bound.

All the errors shown in table VIII are with respect to a
probability of collision PC of 1.0×10–5. As can be seen, under
worst-case conditions, combining the largest space object with
the largest value of correlation and assuming that the long side
of the rectangle is at right angles to the semimajor axis of the
error ellipse, the error is 3.37×10–7. This represents approxi-
mately 3.4 percent of the probability of collision.

Values of the correlation of the covariance matrix Σ, which
is the sum of the two independent covariance matrices of the
launch vehicle and the space object, are usually not expected to
be as large as 0.95. For this reason and given the large number
of conservative assumptions made in the derivation of equation
(31) and in the computation of the values shown in table VIII,
it may be concluded that the errors in equation (9) are generally
smaller than those given in the last column of table VIII.
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A* area of region R* that is a function of A1, A2 and the
shape and orientation of the two objects

A´ area of region Ŕ

Aσ area of ellipse defined by equation x y
x

y
[ ] 





=−Σ 1 1

A1 area of object 1 projected into x,y-plane of relative
motion coordinate system (RMCS)

A2 area of object 2 projected into x,y-plane of RMCS

D diagonal matrix, elements of which are square roots
of eigenvalues of Σ

H nominal separation distance between two objects at
point of closest approach

H* value of Hmax when σT = σmin

Hmax maximum value of Hmin for given value of σT over
the range of 0 ≤ νeqv ≤ ∞ (The value of Hmax occurs
when νeqv = Hmax.)

Hmin minimum separation distance required to ensure that
probability of collision be less than PC  for any
given covariance matrix

L* length of sides of rectangular region R*
0 along direc-

tion given by θ

L´ length of sides of rectangular region Ŕ  in u-direction

M 3×3 matrix that transforms from inertial coordinates to
the RMCS

N orthonormal matrix whose columns are the normal-
ized eigenvectors of Σ and whose transpose is used
to rotate R*

0

P probability of collision of an orbiting space object
with a launch vehicle and/or spacecraft

PC probability of collision of an orbiting space object
with a launch vehicle and/or spacecraft if a constant
probability density function is assumed

(PC)max maximum value of PC for given value of σT and A*

PU, PV standard normal cumulative distribution functions

p probability density function

pC collision probability density

pU, pV standard normal probability density functions

R* region of x,y-plane surrounding one object such that
if center of second object is within the region, a
collision will result

Ŕ region R*
0, after translation by (0,–H), rotation by

NT, and rescaling by D–1

R*
0 region R* translated to the origin

RT remainder term in Taylor expansion of probability
of collision formula

t time

U,V standard normal random variables obtained after
translation, rotation, and rescale of random vari-
ables X,Y

u,v coordinates in plane obtained after translation, rota-
tion, and rescale of x,y-plane

u´,v´ coordinates of center of rectangular region Ŕ

W* length of sides of rectangular region R*
0 along direc-

tion given by θ + 90°

W´ length of sides of rectangular region Ŕ  in v-direction

X,Y,Z random variables that map trajectory event space to
x-,y-, and z-values of relative location of two objects
in RMCS

x,y,z coordinates in RMCS

θ angle between x-axis and semimajor (or semiminor)
axis of probability contour of Σ, as well asor ien-
tation of two sides of rectangular R*

0 with respect to
x-axis

λ+, λ– eigenvalues of Σ with λ+ the value associated with
eigenvector along direction given by θ and λ– the
value associated with eigenvector along direction
given by θ + 90°

Appendix B

Symbols
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νeqv equivalent 1-sigma position error measured in
y-direction of RMCS which, combined with a  cor-
relation of zero, would yield same probability of
collision as νT combined with ρT

ν ν ρeqv = −



T T1 2

νmax value of νeqv at which Hmin is a maximum

vT 1-sigma error of relative positions of object 1 and
object 2 measured in y-direction of RMCS,

ν ν νT = +



1

2
2
2

ν1 1-sigma position error of object 1 measured in
y-direction of RMCS

ν2 1-sigma position error of object 2 measured in
y-direction of RMCS

ρT correlation between σT and νT

ρ1 correlation between σ1 and ν1

ρ2 correlation between σ2 and ν2

Σ 2×2 covariance matrix of marginal distribution
associated with random variables X and Y, variances
σ2

T, ν2
T and correlation ρT

σmin minimum value of σT

σT 1-sigma error of relative positions of object 1 and
object 2 measured in x-direction of RMCS

σ σ σT = +



1

2
2
2

σ1 1-sigma position error of object 1 measured in
x-direction of RMCS

σ2 1-sigma position error of object 2 measured in
x-direction of RMCS

(•)T transpose of a matrix

|•| absolute value of a scalar or determinant of a matrix

(•)–1 reciprocal of a scalar or inverse of a matrix

∋ such that

∀ for all
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